
Ubuntu Touch VoLTE Investigation

Ubuntu Touch VoLTE Investigation

Revision v1

July 22, 2021

sysmocom is a trademark of sysmocom – systems for mobile Communications GmbH

Copyright © sysmocom – systems for mobile communications GmbH, 2021. All rights reserved.

Page 1 / 12 v, July 22, 2021

sysmocom
systems for mobile communications GmbH

Ubuntu Touch VoLTE Investigation

Table of Contents

Table of Contents
1 Introduction ... 2

1.1 Existing Telephony Architectures .. 3
1.2 Tracing of VoLTE Traffic .. 4

1.2.1 Running tcpdump in Android .. 4
1.2.2 Configuring Wireshark to show ESP payloads .. 5
1.2.3 VoLTE registration ... 5
1.2.4 MT (mobile terminated) VoLTE call ... 6

2 Proposed Architecture for Ubuntu Touch .. 6

2.1 Open Source IMS Implementation .. 7
2.2 Proprietary IMS Service in Halium ... 8

3 Recommendation ... 8
4 Proposed Project Plan ... 8

4.1 Milestones ... 9

4.1.1 Desktop: IPsec towards commercial operator ... 9
4.1.2 Desktop: IMS registration to commercial operator ... 9
4.1.3 Desktop: MO + MT voice call IMS signaling ... 9
4.1.4 Desktop: voice call user plane ... 9
4.1.5 Volla: IMS signaling via QCI=5 dedicated bearer ... 9
4.1.6 Volla: IMS user plane via QCI=1 dedicated bearer ... 9

4.2 List of major tasks ... 10
4.3 Out of scope ... 10

4.3.1 UI Integration ... 11

4.4 Development Process .. 11

1 Introduction
Ubuntu Touch is an alternative, fully Open Source operating system for smart phones. While its
community has ported it to a variety of hardware devices, support for cellular network functionality is
not complete. One particular missing gap is the support for VoLTE, which is a requirement in some
markets today, while 2G and/or 3G networks are being phased out.

One device for which an Ubuntu Touch port exists is the “Volla Phone”. This phone is available with
different operating systems. The Android OS on this phone provides VoLTE functionality, so we know

Page 2 / 12 v, July 22, 2021

Ubuntu Touch VoLTE Investigation

the hardware and modem firmware implementation is complete, only the application processor
software is missing.

1.1 Existing Telephony Architectures
The two diagrams below illustrate the high-level architecture of components involved with telephony
in the respective operating systems:

In order to come up with a strategy to support VoLTE on Ubuntu Touch, it is important to understand
how VoLTE works in the [mostly proprietary] Android based VoLTE on identical hardware.

The RIL daemon (proprietary mtkfusionrild for the “Volla Phone”) is being accessed by
different components in both operating systems (oFono, ConnectionService). The
ConnectionService in Android is communicating with an ImsService (proprietary
com.mediatek.ims for the “Volla Phone”) over the ImsService API. The ImsService
implements the IP Multimedia Subsystem (IMS), on which VoLTE is based. Only the ImsService API
is standardized by the Android platform. The implementation of that API is vendor specific and
usually proprietary.

In Ubuntu Touch, IMS is so far not implemented.

Page 3 / 12 v, July 22, 2021

Figure 1: Telephony Architecture in Ubuntu Touch

RIL (Halium) oFonoModem Linux ...

Figure 2: Telephony Architecture in Android

Modem Linux RIL ConnectionService ...

ImsService

Ubuntu Touch VoLTE Investigation

1.2 Tracing of VoLTE Traffic
In order to propose a technological architecture, it is important to know which parts (if any) of the
VoLTE traffic are routed through the application processor, and which parts are on the modem. We
verified that in the case of the “Volla Phone” using tcpdump and wireshark:

• SIP/SDP traffic (for signaling) is handled on the application processor

• RTP traffic is absent, hence it must be handled on the modem processor

The same methodology can be used later during implementation of one of the proposed solutions, to
compare the behavior with the original stack.

1.2.1Running tcpdump in Android

We installed the latest Android build for the device, using the ubports-installer (and reported
#1940 in the process, the installation had to be done twice to be successful). Root access was obtained
with Magisk v22.1.

Archive name volla-9.0-20201019-nightly-k63v2_64_bsp-signed.zip

Build number PPR1.180610.011 dev-keys

Custom build version alps-mp-p0.mp7-V2.51_prize.p0mp7.k57pv1.dm.64_P7

A familiar shell environment with tcpdump was set up by running the following inside Termux:

$ pkg update
$ pkg install openssh tsu tcpdump
$ passwd
$ sshd

Then on the PC, to which the phone is connected via USB:

$ adb forward tcp:8022 tcp:8022
$ ssh -p 8022 localhost \

sudo tcpdump -i any -s0 -w - -U -n not port 8022 \
| wireshark -k -S -i -

In our testing, the interesting traffic was on interface (-i) ccmni2. But any can also be used since there
is no interfering traffic.

Page 4 / 12 v, July 22, 2021

https://termux.com/
https://github.com/topjohnwu/Magisk/releases
https://github.com/ubports/ubports-installer/issues/1940

Ubuntu Touch VoLTE Investigation

1.2.2Configuring Wireshark to show ESP payloads

In our testing we found that ESP is only used for integrity protection. Wireshark will not attempt to
decode them by default (screen shot below), but can be configured to do so by opening the
preferences, then selecting Protocols, ESP and ticking “Attempt to detect/decode NULL encrypted
ESP payloads”.

1.2.3VoLTE registration

As the VoLTE connection gets established, SIP messages to REGISTER and SUBSCRIBE can be
observed from the application processor to the operator IMS core:

Page 5 / 12 v, July 22, 2021

Figure 3: wireshark trace of IMS/VoLTE registration

Ubuntu Touch VoLTE Investigation

1.2.4MT (mobile terminated) VoLTE call

The following screen shot shows data captured on the application processor during a call. It follows
the SIP protocol with receiving an INVITE together with SDP-encapsulated information about the RTP
stream, sending Trying and Ringing and waiting until the user answers the phone. Then the OK is sent,
and an ACK is received.

The RTP traffic is not visible on the application processor, hence it must be completely handled by
the modem.

When the user hangs up, a BYE is sent.

So all in all we can conclude that the entire SIP IMS signaling plane is implemented

2 Proposed Architecture for Ubuntu Touch
We see two alternatives in terms of a VoLTE architecture for Ubuntu Touch.

Page 6 / 12 v, July 22, 2021

Figure 4: wireshark trace showing SIP signaling of TM VoLTE call

Ubuntu Touch VoLTE Investigation

2.1 Open Source IMS Implementation
Run an open source IMS implementation in Ubuntu Touch, outside of Halium. This could either be
implemented inside the oFono code base, or as standalone component which communicates with
oFono (similar to the ConnectionService and ImsService architecture).

The oFono fork used in Ubuntu Touch is based on version 1.17, which does not have any IMS
functionality. An IMS API was added to oFono 1.22 (Changelog, doc/ims-api.txt), but it only works
with the Intel xmm7modem, and relies on the actual IMS implementation running in the modem and
only being registered with AT commands from oFono (drivers/xmm7modem/ims.c). Therefore, it is
not useful in the context of this project.

Despite VoLTE being completely based on publicly available standards by 3GPP and IETF, there is no
existing, maintained open source IMS client implementation available. This is even more surprising as
there was a lot of activity in the 2008 to 2012 timeframe, when IMS was still new and various
research projects were built around it. Those projects all were aimed at the actual IMS itself, and not
at the LTE specific implementation of IMS as used in VoLTE.

A 2012 summary of the state of existing, but now abandoned/defunct open source IMS client
implementations can be found at https://nil.uniza.sk/six-open-source-ims-clients-features-overview-
february-2012/ - the only native Linux one in that list is UCT IMS Client, abandoned in about 2012.

A brief analysis of those code bases showed that the doubango framework looks like the most
complete and reusable codebase among the available options. There are three existing FOSS IMS
clients based on the doubango framework: imsdroid (Android), idoubs (iOS), boghe (Windows Phone
8). A native Linux client is unfortunately missing.

The goal is to replace all required functionality of the proprietary ImsService. However, there is great
variation in what the ImsService is doing depending on the vendor’s implementation. For
com.mediatek.ims, we found that it is implementing IPsec and VoIP signaling (on the application
processor)(on the application processor). From other modems, such as the Quectel EG25-G, we know
that IPSec and VoIP are handled on the modem processor.

In this architecture proposal, we recommend adapting and enhancing an open source IMS
implementation (doubango) for VoLTE, with platform/vendor specific support on the Volla phone. A
proof of concept should be possible by comparing traces of this new implementation with traces of the
existing implementation (e.g. between RIL/ConnectionService, ConnectionService/ImsService and on
the network interfaces). In the case of “Volla Phone” at least with one German operator, we found that
the IPSec ESP traffic is not encrypted and can be viewed in Wireshark. The implementation could be
made more robust by testing it in a private VoLTE network, which allows testing corner cases and
tracing from the core network side.

Page 7 / 12 v, July 22, 2021

https://github.com/DoubangoTelecom/doubango
https://nil.uniza.sk/six-open-source-ims-clients-features-overview-february-2012/
https://nil.uniza.sk/six-open-source-ims-clients-features-overview-february-2012/
https://git.kernel.org/pub/scm/network/ofono/ofono.git/tree/drivers/xmm7modem/ims.c
https://git.kernel.org/pub/scm/network/ofono/ofono.git/tree/doc/ims-api.txt
https://git.kernel.org/pub/scm/network/ofono/ofono.git/tree/ChangeLog

Ubuntu Touch VoLTE Investigation

If the first implementation was done to be compatible with a Mediatek device, it is likely that it will
work for other Mediatek devices too with either no or few adjustments. Once the process is done for
one vendor, it should be easier to extend the open source IMS implementation to work with another
phone/modem vendor.

2.2 Proprietary IMS Service in Halium
An alternative proposal is running the proprietary ImsService inside Halium. The benefit is, that
once the whole ecosystem to run the ImsService is in place, it should in theory be possible to run
the ImsService implementation of any vendor.

In contrast to the RIL daemon and related binaries, which are already running inside Halium, the
ImsService is always implemented in Java. It is currently not possible to run such Java-based
services inside Halium. So this would need to be implemented in Halium first. We do not have much
experience with Halium, but Florian Leeber noted that this is a non-trivial larger development effort,
and that it may lead to requiring a bigger system partition and therefore problems with older devices.

Once the proprietary ImsService is running inside Halium, oFono can be extended to
communicate with ImsService through Android’s ImsService API. During development of the
oFono improvements, traces and a private VoLTE network could be utilized to compare with Android
and to verify that everything is working correctly (as in 2.1).

3 Recommendation
While proposal 2.2 has the attractive potential of making ImsService implementations of any
vendor work, this is still an assumption that can only be verified once a large effort of development
has been invested. We recommend to rather invest these efforts in proposal 2.1. Even though the result
will likely be more vendor specific, it yields a full open source IMS stack + application, which is more
efficient and maintainable in the long run.

As IMS is also used for VoWiFi, a FOSS IMS client developed within proposal 2.1 would almost
immediately also enable VoWiFi use cases: VoWiFi effectively is the same IMS over IPsec over the
public internet, instead of the LTE related dedicated bearers.

4 Proposed Project Plan
The high-level goal of the project plan is to have functional IMS voice calls over LTE on the Volla
Phone. sysmocom would take care of implementing anything up to the point where this can be
demonstrated with a simple command-line client on the target device, but not work on UI / application
exposure of the VoLTE call functionality.

Page 8 / 12 v, July 22, 2021

Ubuntu Touch VoLTE Investigation

4.1 Milestones
The first set of milestones are labeled “Desktop”. This means that development happens on a normal
“desktop” GNU/Linux system, and not yet on the target hardware (Volla Phone). This results in a
more rapid development cycle, as all parts of the software not strictly related to the target hardware
and OS environment can be debugged natively on the desktop PC.

Later on, once everything is working on the desktop PC, an interoperable IMS implementation exists,
and that known-working software is integrated with the target environment. Hence, related milestones
are subsequently running on the target device.

4.1.1Desktop: IPsec towards commercial operator

Capability to successfully establish an IPsec session to the operator core network, using EAP-AKA
and the ISIM for authentication.

4.1.2Desktop: IMS registration to commercial operator

Capability to perform a successful IMS registration to the operator core network, including
authentication using the ISIM. At this point, IMS signaling (e.g. incoming MT calls) from the operator
CN arrives at the client, but is not handled yet.

4.1.3Desktop: MO + MT voice call IMS signaling

Capability to handle signaling related to MO and MT voice calls. That means, successful handling of
all normal phases of a call, until its release. No voice audio is yet included.

4.1.4Desktop: voice call user plane

Capability to perform voice calls with working user plane (via sound card present in desktop PC)

4.1.5Volla: IMS signaling via QCI=5 dedicated bearer

This resembles milestone 5.1.2 / 5.1.3, but not on the desktop PC over the public internet but on the
target device via the dedicated radio bearer on QCI=5 over LTE. It includes any required interaction
with the cellular modem in the target device to create (and later remove) that QCI=5 bearer.

4.1.6Volla: IMS user plane via QCI=1 dedicated bearer

This resembles milestone , but not on the desktop PC over the public internet but on the target device
via the dedicated radio bearer on QCI=1 over LTE. It includes any required interaction with the
cellular modem in the target device to create (and later remove) that QCI=1 bearer, as well as handling

Page 9 / 12 v, July 22, 2021

Ubuntu Touch VoLTE Investigation

the RTP voice audio handling (encoding/decoding, playing voice and recording voice from the
microphone).

4.2 List of major tasks
Taking up proposal 3.1 would require the following major work items:

1. IMS interoperability of doubango against commercial cellular network

1.1. P-CSCF and/or ePDG resolution / discovery procedures

1.2. Integration of ISIM for authentication on SIP/IMS domain

1.3. Integration of Linux kernel IPsec (IKE in doubango or extending StrongSwan)

1.4. Whatever missing bits required for interoperability of IMS registration

1.5. Whatever missing bits required for MO Voice Call Signaling

1.6. Whatever missing bits required for MT Voice Call Signaling

1.7. Whatever missing bits required for Voice Call with User Plane

2. doubango IMS / LTE Integration

2.1. Hooks for platform specific code to trigger the creation of dedicated bearers for QCI=1 and
QCI=5

3. Platform specific integration

3.1. Establishing dedicated LTE bearer for QCI=1 (IMS signaling)

3.2. Establishing dedicated LTE bearer for QCI=5 (IMS RTP user plane)

3.3. Instructing modem to handle RTP flow? How to tell it about the IP/Port/codec/...?

4.3 Out of scope
In order to not constrain the scope of this initial project, we currently intentionally declare the
following topics out of scope:

1. Supplementary Services (like call waiting, multiparty, hold and retrieve, etc.)

2. VoNR functionality (voice over 5G New Radio)

3. SRVCC (seamless hand-over between 2G/3G CS call and 4G/IMS call)

Page 10 / 12 v, July 22, 2021

Ubuntu Touch VoLTE Investigation

4. SMS over IMS (most operators should use SMS-over-SGs anyway)

5. RCS (Rich Communication Suite)

6. UI related work; integration into the Dialer/Phone application on UT

Exclusion of the above topics from the scope does not prevent any of them to be added later on to the
resulting software.

4.3.1UI Integration

As stated above, UI integration is out of scope for the proposed project.

As there are already three existing IMS client applications using the doubango IMS framework, it is
assumed that whatever doubango provides in terms of APIs is sufficient for developing related client
software.

sysmocoms key specialty is within telecom protocols and not UI - specifically we have no prior
knowledge or experience implementing UI on Ubuntu Touch, particularly not the existing UI software
used for making circuit-switched voice calls.

4.4 Development Process
The development happens as true open source project, with the following considerations:

• all development happens in public/open git repositories, no private/internal repos

• all features and bugs are tracked in a public issue tracker

• meaningful commit log messages

• one feature per commit

• attempt to contribute any related changes with upstream (might be challenging in case of
doubango which has not seen a lot of activity in recent years)

• interact with the wider community, accept and integrate any related contributions. sysmocom
does not try to maximize its involvement, but is happy for any part of the project that is
resolved by the wider Ubuntu Touch community.

5 Project Phases / Effort
It is suggested to split the project in two phases.

Page 11 / 12 v, July 22, 2021

Ubuntu Touch VoLTE Investigation

5.1 Phase 1: Exploration and Prototyping

• On Desktop PC: Get more experience with doubango; try to get it to establish IMS signaling
with a commercial operator via IPsec and EAP-AKA with ISIM. This allows us to get a better
view into what magnitude of gaps or interop problems there are in doubango regarding the use
in a commercial IMS network

• On Volla Phone: Investigate thoroughly the interaction betwen ImsService+ril <-> modem
regarding the establishment of decicated bearers and the activation of RTP voice handling on
the modem

At the end of those phase, we should be able to refine the plan and have a better idea regarding the
effort of Phase 2. We will also know if we are hitting major roadblocks regarding the details of the
Volla modem interaction, which could jeopardize the entire project. In the worst case, the project
could be stopped at this point, before the majority of the effort is invested in developing the full-
blown implemetation.

Phase 1 itself is estimated at 15 person-days.

Phase 2: Implementation

Use the results from Phase 1, the actual full-blown implementation of whatever is needed to reach the
goals.

It is currently too early to give a realistic estimate of the amount of effort. An early “gut feel”
guesstimate would be in the order of magnitude of 40 person-days. A lot depends on the size of the
gaps discovered in doubango during Phase 1.

Page 12 / 12 v, July 22, 2021

